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Abstract—The dispersed phase in multiphase flows can be
modeled by the population balance model (PBM). A typical
population balance equation (PBE) contains terms for spatial
transport, loss/growth and breakage/coalescence source terms.
The equation is therefore quite complex and difficult to solve
analytically or numerically. The quadrature-based moment meth-
ods (QBMMs) are a class of methods that solve the PBE by
converting the transport equation of the number density function
(NDF) into moment transport equations. The unknown source
terms are closed by Gaussian quadrature. Over the years, many
QBMMs have been developed for different problems, such as
the quadrature method of moments (QMOM), direct quadrature
method of moments (DQMOM), extended quadrature method of
moments (EQMOM), conditional quadrature method of moments
(CQMOM), extended conditional quadrature method of moments
(ECQMOM) and hyperbolic quadrature method of moments
(HyQMOM). In this paper, we present a comprehensive algo-
rithm review of these QBMMSs. The mathematical equations for
spatially homogeneous systems with first-order point processes
and second-order point processes are derived in detail. The
algorithms are further extended to the inhomogeneous system
for multiphase flows, in which the computational fluid dynamics
(CFD) can be coupled with the PBE. The physical limitations
and the challenging numerical problems of these QBMMs are
discussed. Possible solutions are also summarized.

Index Terms—PBE; QBMM; Multiphase flow; CFD

I. INTRODUCTION

The population balance model (PBM) can be used to de-
scribe the evolution of a population of particles by the number
density function (NDF) for many different industrial pro-
cesses, such as gas-liquid dispersions [1]-[14], liquid-liquid
dispersions [15]-[28], gas-particle flows [29]-[37], [37]-[41],
aerosol engineering [42]-[45], crystallization [46]-[54], react-
ing flows and combustions [55]-[62], soot formation [63]-
[65], and sprays [66]-[72], to cite just a few. Analysis of
the particulate system seeks to synthesize the behavior of the
population of particles and its environment from the behavior
of single particles in their local environments. Readers who are
interested in the numerical aspects of the industrial processes
that are listed above are referred to the latest works [73]-[76].
Among researchers, chemical engineers have put population
balances to the most diverse use for multiphase flows [77].

However, due to the complex characteristics of the pop-
ulation balance equation (PBE), the analytical solution can
be acquired only under a rigid assumption [78]-[81]. Differ-
ent numerical methods were developed and applied to solve
the PBE, such as the class method (CM) [54], [82]-[84],

method of moments (MOM) [85]-[87], method of weighted
residuals (MWR) [88]-[91], Monte-Carlo method [92]-[101],
direct quadrature spanning tree (DQST) method [102], [103],
Lattice Boltzmann method [50], and method of manufactured
solutions (MMS) [80], [104], [105] and others [106]-[108].
Each can be further divided into sub-methods, such as the
higher-order moment conserving method of classes (HMMC)
[109] and cell averaged technique (CAT) method [110], [111]
in the CM, and the Taylor-series expansion method of moment
(TEMOM) [112]-[115], finite-size-domain complete set of
trial functions method of moments (FCMOM) [116], [117] and
moment projection method (MPM) [118], [119] in the MOM.
Each method has disadvantages and advantages over the oth-
ers. For example, the CM can provide information on the shape
of the NDF. However, it requires many discretized sections
to achieve desirable accuracy, which is highly computational-
resource demanding [77]. The multivariate CM may require
more than 10 thousand equations to be solved in certain cases
and the algorithm is cumbersome [6], [120]. The MOM can
predict the mean Sauter diameter as accurately as the CM,
but the main drawback is that the NDF can not be predicted
directly. However, the derivative methods that are based on
the MOM are very popular due to their balance between
accuracy and computational resource requirements, especially
when the PBE is coupled with computational fluid dynamics
(CFD). The derivative methods that are based on the MOM
are shown in Table. 1. The algorithms that employ Gaussian
quadrature to close the source terms are grouped into the so-
called quadrature-based moment methods (QBMMs), which
distinguish themselves from others by using the quadrature
weights and abscissas to calculate the unclosed terms.
Hulburt and Kats [85] pioneered the work of developing
the MOM to solve the PBE. The MOM solves the PBE by
tracking the time dependence of just the lower-order moments
of the NDF, as the lower-order moments are sufficient for the
investigation of the industrial processes by engineers. This is
the point where it differentiates from the CM, in which the
NDF is discretized as sections and each section is transported
according to it’s own transport equation. The source terms in
PBE are closed by expressing them in terms of the lower-order
moments. Therefore, the moment equation system is closed
and the computational resource requirement is dramatically
decreased. However, moment closure in the MOM requires a
rigid restriction on the mathematical form of the source term,



which becomes an obstacle for applying the MOM to realistic
processes.

To eliminate the rigid restriction in the MOM, McGraw
[121] developed the quadrature method of moments (QMOM)
to solve the PBE for growth problems. In the QMOM, the mo-
ments of the NDF are approximated by the n-point Gaussian
quadrature, and the NDF can be approximated by the abscissas
with a delta function. The abscissas (nodes) and weights
can be calculated from the moments by a moment inversion
algorithm, e.g., the product-difference (PD) algorithm [122]
or the wheeler algorithm [123]. It was shown by McGraw
[121] that the growth term can be easily approximated by
Gaussian quadrature and it does not need to comply with a
specific mathematical form. Meanwhile, the prediction of the
time evolution of mg to ms agrees well with the analytical
solution, with a relative error of less than 0.2% [121]. The
QMOM was then applied to the coagulation problem [124],
and the breakage and coalescence problems [125], [126]. Due
to the simplicity of the QMOM, it can be easily coupled with
a CFD solver.

However, the QMOM is only applicable to univariate dis-
tributions due to the limitations of Gaussian quadrature. To
overcome this problem, Wright et al. [140] proposed a direct-
inversion method in the context of particle coalescence and
sintering. This method is usually referred to as the multivariate
QMOM or the Brute-force QMOM [73]. Yoon and McGraw
[141] developed the Tensor-product QMOM in the context of
aerosol modeling. Baldyga et al. [142] developed the Gaussian
Cubature (GC) technique for crystallization, aggregation and
sintering. Another method is the direct quadrature method
of moments (DQMOM) which was developed by Marchisio
and Fox [127]. The main feature of the DQMOM is that
the primitive variables (weights and abscissas) are transported
instead of the conservative variables (moments). Therefore,
application of the moment inversion algorithm is not necessary
after the weights and abscissas have been found. Moreover, ex-
tending the univariate DQMOM to the multivariate DQMOM
is straightforward and it has been applied to different industrial
processes [143]-[147].

One of the biggest drawbacks of the DQMOM is that it is
affected by problems that are related to the proper conservation
of some moments of the NDF when it is coupled with CFD.
These problems were prevented by the fully conservative DQ-
MOM algorithm [6]. When the DQMOM is applied to purely
hyperbolic transport equations, it will fail if there are shocks
in the abscissas due to the discontinuity. This situation occurs
most commonly when the velocity is the internal coordinate.
For such cases, only the multivariate moment method appears
to be able to overcome these problems. Thus, the CQMOM
[120], [128] was proposed for solving the multivariate system
efficiently and accurately. It employs conditional probability
function theory to approximate the multivariate NDF. The
conservative variables (the mixed moments) are transported
and it is more robust than the DQMOM for problems in which
shocks may occur (e.g., the gas velocity can be discontinuous
in the Euler equation).

All the QBMMs that were discussed above only predict
a discontinuous NDF, which will lead to problems in some
cases. For example, if the PBE is used to simulate evaporation
problems, a term that explains the loss of particles of zero
size appears in the zero-order moment equation. To evaluate
this term, the value of the NDF for a zero-size particle is
required. If the QBMM was employed in large eddy simu-
lation (LES) framework, the velocity dispersion around the
velocity abscissa needs to be captured [148]. One possible
solution is to increase substantially the number of abscissas
so that the phase space is adequately discretized. However,
the moment inversion algorithm is not accurate for N larger
than approximately 10 [73]. The QBMMs that were discussed
above will fall due to the discontinuous NDF reconstruction.
To predict the continuous NDF, the EQMOM [129], [148] was
developed. It can be viewed as an enhanced version of the
QMOM, which employs an existing kernel density function
(KDF) to approximate the NDF. After the moment transport
equations have been solved, the parameters of the KDF can
be calculated and a continuous NDF can be reconstructed. To
calculate the additional unknown variance o in the KDF, one
additional moment transport equation is necessary. At last, it
should be noted here that the hyperbolic quadrature method of
moments (HyQMOM) was developed recently to circumvent
the known disadvantages of the CQMOM when it was applied
to KE [132] to prevent weak-hyperbolicity. It can be also
combined with the CQMOM for problems with multivariate
NDF and a CHyQMOM was constructed.

It can be seen that a large variety of QBMMs have been
developed in past works to solve the PBE with univariate
NDF or multivariate NDF. When the method is coupled
with CFD for inhomogeneous multiphase systems, special
numerical treatments need to be applied to ensure robustness
and stability. The focus of this paper is to present an algorithm
review for these methods. The advantages and drawbacks of
each QBMM are reviewed in depth and summarized. The
remainder of the work is organized as follows. In section 2 the
algorithm of the QMOM, DQMOM, EQMOM, CQMOM and
ECQMOM for spatially homogeneous systems is described. In
section 3 the CFD-PBE coupling algorithm for spatially inho-
mogeneous multiphase systems is discussed. In section 4 the
numerical aspects of the spatially transported moments, such
as the boundedness problem, higher-order advection schemes,
realizability of the moments, and reconstructed continuous
NDF are investigated. Finally, conclusions are drawn in section
5.

II. ALGORITHMS FOR SPATIALLY HOMOGENEOUS
SYSTEMS

This NDF transport equation in the PBM can be given by
different names. The population balance equation (PBE) is
usually used to describe the evolution of the NDF, namely,
n(t, x, &), which is independent of the velocity but dependent
on an internal coordinate vector £, which can be the particle
size d or the composition ¢. The kinetic equation (KE) is
usually used to describe the evolution of the velcocity number



TABLE I: Summary of the moment-based algorithms in the literature.

1st level derivatives 2nd level derivatives

QBMM

QMOM [121], DQMOM [127], DQMOM-FC [6], CQMOM [128], EQMOM [129],

ECQMOM [73], Cumulative QMOM [130], ADQMOM [131], HQMOM [132], CHyQ-

MOM [132]
SQMOM [133]
FCMOM [116]
TEMOM [112]
MOMIC [138]
S — ~ model [139]
MPM [118]

OPOSPM [134], MPSPM [135], SM-SQMOM [25]

DEMM [136], GTEMOM [137]

function (VDF), namely, n(t, x, Uq), in which different veloc-
ities of the particles are considered. The KE is also called the
Williams-Boltzmann equation in the field of sprays [149] and
the general particle-dynamic equation in the field of aerosols
[150]. When the NDF is dependent on both the velocity and
other mesoscale variables (e.g., particle size), the governing
equation for the NDF (e.g., n(t,x,£, Uq)) is usually called
the generalized population balance equation (GPBE). In this
work, we focus on the algorithms of the QBMMs for the PBE
in spatially homogeneous and inhomogeneous systems. Unless
otherwise stated, the internal coordinate is the particle size.

Consider a single computational volume, as shown in Fig.1.
The NDF describes the number concentration of particles
with sizes between d and d + dd. Particles can break up
into smaller particles or coalesce with other particles to form
larger particles due to movement or external forces. The PBE
describes the time evolution of the NDF. According to Fig.1,
the unknown NDF is a distribution function instead of a vector
value or a scalar value (e.g., U or p). The following PBE
governs the evolution of the NDF:

In(t,x,¢§)
ot

where n(t, x,£) is the NDF; x is the location vector, which is
often referred to as the external coordinate; £ is the internal
coordinate vector; Uy is the particle’s velocity, which is
assumed to be known in the PBE; S is the possible source
term which is often called point processes in the field of PBM
[73]; Vx and V are divergence operators in the physical and
phase spaces, respectively. Eq. (2) can be simplified further
for different problems. For example, if only the particle size
is included in the internal coordinate and continuous changes
of particle size (the zero-point processes) can be neglected,
Eq. (2) can be written as

+vx'(Udn(ta X,f))ﬂ‘V&'(fﬂ(f,X, 5)) = Sv (1)

on(d)
ot
for a homogeneous system and

on(d)
ot

for an inhomogeneous system (the dependences of n(t,x, &)
on t and x are omitted for simplicity). In Eq. (3), Uy is often
calculated by a CFD model. Nevertheless, after the simpli-
fication, the exact solution of Eq. (2) can be only acquired

=9 2)

+ V- (Uan(d)) = S 3)

with rigid assumptions on the non-linear source terms. In
the following, different solving methods for a homogeneous
system are studied in details.

n, ()

d, (m)

Fig. 1: An example of the NDF in one computational volume.

A. MOM

Although the MOM does not belong to the QBMMs since
it is not based on the Gaussian quadrature closure, it is still
necessary to discuss it here because it was the work of Hulburt
and Katz [85] in which the NDF transport equation was first
transformed into the moment transport equations. In the MOM,
the k-th order moment of the NDF is defined by the following
equations:

my = / - d*n(d)dd. 4)
0

The lower-order moments may have specific physical mean-
ings. For example, m( represents the total particle number
per unit volume, mo is related to the total particle area per
unit volume (k,ms, k, is the surface shape factor), and ms
is related to the total particle volume per unit volume (k,ms,
k, is the volume shape factor). The shape factors depend on
particle morphology. The mean particle size can be defined
as the ratio my41/my, for any value of k. It should be noted
that the dimension of the NDF varies. Readers are suggested
to the Appendix for further information. Usually, the mean
Sauter diameter is used, which is defined by mg/ms. If we
multiply the L.H.S. side of Eq. (2) by d* and integrate it over
d, the NDF transport equation is transformed into moment
transport equations:

< On om e
/0 d 5 dd 5 /o d®Sdd. ®)



Eq. (5) is not closed since the source terms include the
unknown functions. The MOM imposes rigid constraint on the
source terms to approximate them by the moments. Consider
a typical zero-order-process, the growth source term can be
written as the following equation:

oGn
S=—— 6
o7 ®)
where G is the growth function. If we multiply the R.H.S. of
Eq. (6) by d* and integrate over d, it can be simplified by the

following relationship:

> 0Gn >
— —d*dd = — d*d (G
/0 - / (Gn)

oo
= —d*Gn [° +I~:/ Gnd*='dd (7)
0

oo
=k / Gnd*—1dd.
0

In Eq. (7), d*Gn |§° equals zero since the tails of the NDF
function tend to zero. By substituting Eq. (7) into Eq. (5), the
moment transport equations with the growth source term can
be written as:

gmi _y, / Gnd*~'dd. ®)
ot 0

Eq. (8) is not closed either because its R.H.S. depends on the

unknown NDF. However, as reported in the work of Hulburt

and Katz [85], if the growth term has a special shape, such as

¢ = G/d, where G is a constant value, Eq. (8) can be written

as follows:
8mk

=t kG / nd*2dd = kGmy_o. 9)
ot 0

For simplicity, but without loss of generality, Eq. (9) can be
expanded to the following set of moment equations:

87710
o
5‘m1 :Gm_h
Oms =Gm
ot 0>
om:-
% = Gml.

The systems in Eq. (10) has four equations with five unknown
variables. Hulburt and Katz [85] further assumed that the NDF
had a special mathematical form that was parametrized by its
moments. For example, based on the Gamma distribution, the
NDF can be expressed by the leading terms of the Laguerre
series expansion. By this assumption, m_; can be calculated
by [85]

mgml

(1)

Mm-1= 2m? — moma
By substituting Eq. (11) into Eq. (10), the equation system is
closed.

In the MOM, the moment equation system is self-closed
by imposing a rigid restriction on the source term and the

NDF. However, in contrast to the CM, only four moment
transport equations need to be solved. One may ask whether
other possible source terms, such as breakage and coalescence
terms, can be treated in a similar way to form a self-closed
equation system. Unfortunately, to the best of the author’s
knowledge, this is impossible due to their highly non-linear
characteristics. This limits the ability to apply the MOM to
realistic industrial processes. However, the MOM successfully
transforms the NDF transport equation to moment transport
equations, which constitute the fundamental basis of other
QBMMs.

B. OMOM

The main strategy of the QMOM [121] is to approximate the
tedious integrals that appear in the source terms by the n-point
Gaussian quadrature. Mathematically, the Gaussian quadrature
seeks to solve the integral numerically. For any given integral,
it can be approximated by the following equation:

N
/Qf(x)dx ~ szf(ml),

where w; are the weights, x; are the abscissas, and N is
the number of weights (which is equal to the number of
abscissas). The Gaussian quadrature calculates the integral by
N’s weights and abscissas of order 2N — 1. The essence of the
quadrature-based closure is that the abscissas and weights can
be completely specified in terms of the lower-order moments
of the unknown NDF. For example, the k-th order moments
can be computed by

00 N
my = / d*n(d)dd =) d¥w;.
0 i=1

Eq. (13) can be written in the following expanded form (N =
2):

(12)

13)

wy + w2 = My,

diwy + dowo = mq,
; 1 ; 2 1 (14)
d1w1+d2w2 = Mma,

3 3
dlwl + d2w2 = ms,

For any given initial moments my, that correspond to a real
NDEF, Eq. (14) can be used to calculate the abscissas and
weights. The direct solution to Eq. (14) requires a non-linear
solver, such as the Newton-Raphson method [151]. McGraw
[121] proposed to use the product-difference (PD) algorithm
[122] to find the abscissas and weights, where abscissa ¢ and
weight ¢ correspond to the eigenvalue and the first component
of the ith eigenvector of the constructed tridiagonal matrix,
respectively. The PD algorithm, or another similar algorithm
(the Wheeler algorithm [123]), is usually called the moment
inversion algorithm in the field of PBM. After the abscissas
and weights have been calculated by the moment inversion
algorithm, the source terms can be calculated and the equation
system is closed. In the following, the breakage (first-order
point process) and coalescence (second-order point process)



source terms are included in the moment transported equations
as an example to demonstrate how the moment transport
equations are closed in the QMOM.

The breakage and coalescence source terms are defined by
[77]

S(d)

d
d/3 d/
- %/ FTE )n ((d3 - d’3)%) n(d) dd’
/ a(d, d'yn(d') dd’ + / g(d) B (d|d)n (&) dd’
0 d

—g(d)n(d), (15)
where a(d, d’) is the coalescence kernel, which quantifies the
rate of coalescence of particles of size d (daughter particle)
and d’ (mother particle); g(d) is the breakage kernel, which
quantifies the frequency of breakage of particles of diameter d;
and S (d|d’) is the daughter size distribution function, which
describes the number and size of particles that are formed by
a breakage event. The first and second terms in the R.H.S.
of Eq. (15) represent birth and death due to coalescence; the
third and fourth terms in the L.H.S. of Eq. (15) represent birth
and death due to breakage.

With the Gaussian quadrature, the death term and the birth
term of the breakage source term can be calculated by

/ d*g(d)n(d)dd = Zd’“ w;  (16)
0
and
[ [o@ s@ama) aa ) ad
0 4
[ee) d/
:/n(d’)g(d’) /6(d|d’)d’“dd dd’
0 0
N d;
=Y wig(di) | [ B(ddi)d*dd | . (17)
1=1

0
For a given shape of the daughter size distribution function,
e.g., (d|d-) = 2/d;, an solution can be derived:

/,6’ (d|d;) d¥dd = /—d"dd— —dk. (18)

By substltutlng Eq. (18) into Eq. (17), the birth term of the
breakage becomes

o0 oo

/d’f /g(d’)B(d|d’)n(d’) dd' | dd

0 d

9 N
= —— > wig(d;)df. (19)
k414

Similarly, the death term and the birth term of the coalescence
can be calculated by

oo

/ O/a (d,d")n )
= O/ d*n(d) ( O/ a(d,d)n(d)dd’ | dd

a(d;,d")n(d") dd’

(d)dd' | dd

(20)

N
w;d, Za d;, dj)w
j=1

_ %/(ug—i-d':‘)% / (u,d')n( )n(d’)dd’) du
0 0

_ %/n(u) /a(u,d’) (u? +d?)3 n(d’)dd’) du
0 0

N N .

— %Zw > aldi,dy) (dF +d3) w; | . @D
i=1 j=1

where u? = d® — d’3. By substituting Eq. (16), Eq. (19),

Eq. (20), Eq. (21) and Eq. (15) into Eq. (5), the moment trans-

port equations for the QMOM with breakage and coalescence

source terms can be written as follows:

amk = 3 3\ &
= Zw, Z (di, d;) (dF +d3)® w;

N
waidf > a(di, dj)w

i=1 j=1

+szg /6 (d|d;)d* dd de Dw;.

After the weights and abscissas are calculated by the moment
inversion algorithm from the given initial moments, Eq. (22)
can be solved for the moments for the next time step. In
the QMOM, the integrals in the source terms are transformed
to summation operations by Gaussian quadrature. If N = 3,

(22)



only 6 moment transport equations need to be solved, which
requires a total of 9+ 9 4 9 + 3 = 32 summation operations.
The solution procedure of the QMOM is summarized as
follows:
1) From the given initial moments, calculate the weights
and abscissas by the moment inversion algorithm (e.g.,
PD algorithm).

2) Calculate the source term as reported in Eq. (22).

3) Calculate the unknown time derivatives of the moments
in Eq. (22).

4) The iterative procedure is repeated from step 1.

The QMOM does not provide the information of the NDF
directly since it only tracks its moments. The abscissas and
weights have no exact physical meaning because they are only
parts of the quadrature approximation. Nevertheless, they can
be viewed as an approximation of the real NDF, as reported in
Fig.2. Under such assumption, the NDF can be reconstructed
by a sum of N delta functions, where each delta function
represents a class of particles. Therefore, the NDF can be
approximated by

N

i=1
The abscissas represent the particle sizes and the weights are
their relative volume fractions. Eq. (23) is quite similar to the
mathematical definition in the CM in which the NDF is defined

by [152]
N

d) = Nid(d - dy).
=1

where N; is the number of particles with diameter d;. The
main difference between the QMOM and the CM is that in the
CM, the discrete particles need to be defined a-priori, which
may introduce some problems when the engineer does not have
information on the particle size interval. The only solution is
to discretize the particle size over a large enough range to
include all possible sizes. However, it forms many transport
equations. In contrast, only few abscissas (e.g., N = 3) are
necessary in the QMOM and they move along the phase space
axis flexibly. Meanwhile, they change their volume fractions
(weights) to minimize the committed error.

Compared with other QBMMs, the QMOM is the simplest,
and all the other algorithms that are discussed in the following
are derived from the main concept of the QMOM. Due to
its simplicity and robustness, the QMOM was employed to
simulate a large variety of applications, such as gas-liquid dis-
persions [5], [153], liquid-liquid dispersions [21], gas-particle
flows [32], pipe flows [154], aerosol dynamics [155], and
sprays [156], to cite a few. In 2016, the original paper [121]
in which the QMOM was developed was awarded the AS&T
Outstanding Publication Award by the American Association
for Aerosol Research.

C. DOMOM

The original QMOM can be only applied to problems with
a univariate NDF due to the limitations of the Gaussian

(24)

quadrature. One of the motivations for the DQMOM [127]
was to develop an algorithm for solving the multivariate NDF
transport equation. Another motivation was to achieve strong
coupling between the abscissas and phase velocities, which
will be discussed in section 3.2. The main difference of the
DQMOM with other QBMMs is that it tracks directly the
primary variables that appear in the quadrature approximation,
rather than tracking the moments. In this section, we focus on
the algorithm of the DQMOM for the univariate NDF transport
equation, in which the difference between the DQMOM and
the QMOM can be emphasized. It is straightforward to extend
the DQMOM to problems with a multivariate NDF.

By substituting Eq. (23) into Eq. (2), the NDF transport
equation can be written as follows:

N 9w;6(d — d;
3 ( )

i=0 ot
N N
B ow; , od;
= ;5(617 di) 50 = ;wé (d—di)—5 =S (25
Eq. (25) can be reformulated as
N
8’[1)1‘
D 3d—di)
=0
N
Oow;d; ow;
_ ! _ . 1Y _ ! _ . X 1
> (s a0 g~y )
N
Z( i) + 8 (d — d)d8w>
ot
=0
2(5’ (d—d;) aw‘ > — 5. (26)
Applying the moment transform to Eq. (26) yields
T ow;
/ (Z (6(d —dy)+8'(d— di)ds )
, ot
0 =0
N
-y (5’(d - d,»)alg’itdi» d*dd = Sy. (27)
i=0

Given that [d*§(d — d;)dd = d¥ and [d*6'(d — d;)dd =
fkdf_l, Eq. (27) can be simplified to the following:

N
de Wiy a Pl g )

TR ot

which can be written in expanded form (e.g., k =4 and N =



2):

a0,

P (8;; + 8;2) +2d (811(;1td1 + 8“52;12) = S5,

23 (8;;1 + E)gf) +3d3 (&gltdl + &1;;12) = Ss.
(29)
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Fig. 2: Approximations of the real NDF (red solid lines) with
two shapes (top and bottom) by the fixed-pivot CM (left) and
the QMOM (right) with two abscissas (black solid lines) and
three abscissas (green solid lines). The real NDF evolves with
respect to time and its shape changes. In the QMOM, not only
do the weights evolve with time but also the abscissas are free
to move in the phase space. In the fixed-pivot CM, the particle
size interval is defined in advance and particle sizes are fixed;
only the weights of the particles evolve with respect to time.

Eq. (29) can be written in matrix form:

1 1 0 0 2 So
0 0 11 i Sy
B B 2y 2| |20 | T |s,| GO
—2d} —2d} 3d3 3d3] |9wal S

Once the weights and the abscissas have been computed
from the given initial moments, the source terms in Eq. (30)
can be calculated in the same way as in the QMOM (see
Eq. (22)). The matrix that is defined in the L.H.S. of Eq. (30),
which is denoted as A, depends only on the abscissas. If
the abscissas are unique, A will be of full rank for arbitrary
N. Subsequently, the unknown time derivative can be simply
calculated by A~1S:

Ou, 1 10 0717'[S ao
s 0 0o 1 1 Si| _ |am
Lugtdl —d% —d% 2ds  2ds Sy B bo
Quady —2d% —2d% 3d% 3d3 S by
(€1}

The solution procedure of the DQMOM is summarized as
follows:

1) From the given initial moments, calculate the weights
and abscissas by the moment inversion algorithm (e.g.,
the PD algorithm).

2) Calculate the source terms by Eq. (22) and construct the
matrix A by Eq. (30).

3) Calculate the weights and abscissas by Eq. (31).

4) The iterative procedure is repeated from step 2.

The essence of the DQMOM is that the weights and
abscissas are calculated and transported directly. Therefore, the
moment inversion algorithm is only necessary for determining
the weights and abscissas in step 1. This may be an advantage
over the QMOM because the convergence problem in the
moment inversion algorithm may be prevented. However, the
successful computation of DQMOM is based on the assump-
tion that the matrix A is full rank. When the abscissas are
non-distinct, A is not full rank; it is singular. In such cases,
Eq. (30) does not have a unique solution. In the context of
QBMM, this means that not all the delta functions are needed
to represent the NDF [127]. To overcome this problem, which
is due to the identical node’s values, it often suffices to add
small perturbations to the non-distinct abscissas, so that A
becomes full rank [127]. Due to its easy extension to problems
with multivariate NDF, the DQMOM has been employed in
many different applications [157]-[164].

D. EOMOM

The QMOM and the DQMOM employ the delta function
to approximate the real NDF. In such cases, the continuous
NDF is represented discontinuously. From a mathematical
point of view, the real NDF is just a non-negative probability
density function. Instead of using the Dirac delta function to
approximate the NDF, the EQMOM approximates the NDF
by a non-negative distribution function, such as the Gamma
distribution function [129], Beta distribution function [129],
Gaussian distribution function [148] or log-normal distribution
function [165]. The distribution function is called the kernel
density function (KDF) in the context of the EQMOM. Due
to the capability of reconstructing a continuous NDF, the
EQMOM has been applied extensively in problems in which
the reconstruction of a continuous NDF is necessary [166]—
[172]. In the following, the EQMOM with a log-normal KDF
is presented as an example to investigate the algorithm. It is
straightforward to employ other existing distribution functions
as the KDF.

In the log-normal EQMOM, the NDF is approximated by

N
n(d) ~ Y widy(d, di), (32)
1=0

where d,(d, d;) is the log-normal distribution function, which

is expressed as follows:
1 (Ind — d;)?
60’(d7 dl) - dam exp <_W> ’ (33)




where o is the variance of the log-normal distribution function;
d; and w; are the abscissas and weights, which are usually
called the primary abscissas and primary weights in the context
of the EQMOM. The parameter o is assumed to be the same
for all the KDFs to obtain a single non-linear equation. The
concept of the reconstructed continuous NDF of the EQMOM
is presented in Fig.3. It can be seen that the continuous
NDF that is reconstructed from the EQMOM overlaps the
real NDF if the original real NDF follows a log-normal
distribution function, whereas the QMOM only predicts three
discontinuous abscissas.

d, (m) d. (m)
Fig. 3: Approximations for the real log-normal NDF (red solid
line) by three nodes QMOM (left) and one primary node log-
normal EQMOM (right). Black solid line: the abscissas of the
QMOM. Black dashed line: reconstructed continuous NDF by
the log-normal EQMOM.

The moment transport equations in the EQMOM can be
derived in the same way as in the MOM or QMOM so they
are identical to the equations that are reported in Eq. (5).
Moreover, the source terms that are calculated by the EQMOM
should be identical to them as well. One may, therefore, expect
the mean particle size that are predicted by the EQMOM
and the QMOM to be identical. However, because another
unknown parameter o in the EQMOM needs to be calculated,
an additional moment equation is necessary to close the
equation system. For simplicity, but without loss of generality,
the algorithm of the log-normal EQMOM with two primary
abscissas is discussed in the following section.

The moments of the NDF can be expressed by the analytical
solution of the integral of the log-normal distribution function:

myg =

© (Ind — dy)?
- | dd
o dov2mw P < 202

© (Ind — d»)*
+ 2 )44
[ o (-

k‘2 2 k2 2
;)—l—wgexp(kdg—i— 20), (34)

= wy exp (kd1 +

which can be written in the following expanded form (e.g.,

mo = Wi + wa

my = wle(lerL;) + wge(dﬁ%)

(2d1+207) (2d2+207)

Mo = W€ + wae (35)
s = w;e BT o (30+%5)
my = w AT (a0

Eq. (35) is closed for five unknown parameters with five
equations. Directly solving Eq. (35) requires a non-linear
solver, which is computational-resource demanding. However,
if we eliminate wi, ws, d;, and dy from Eq. (35), a polynomial
equation of o can be found. Unfortunately, it is not convenient
to obtain the analytical solution of the polynomial equation
due to the highly non-linear dependence on o. An iterative
root finding procedure, such as Ridder’s method [129], [151],
can be employed to update o. Setting

02
2:67751:6d1,§2:6d2, (36)
Eq. (35) leads to
mo = w1 + wy = my,
m1 = z (w1&1 + weéa) = zm],
me = 2% (w1§12 + wgfg) = z4m§, (37

mg = 2° (wlﬁf’ + wgfg’) = 2"mj,

ma = 2'% (i€} + we&3) = 2'%mj.

where m} is mathematically equivalent to the moments that
are defined in the QMOM in which the NDF is approximated
by a delta function. The o finding procedure consists of the
following main steps: Calculate the corresponding my and
mj, from a given initial o. Update the primary weights and
abscissas from the first four mj; by the moment inversion
algorithm. Determine whether the given initial value of o
satisfies the fifth equation in Eq. (37), namely

8o

flo)=my—e sz;O, (38)

where my4 is the given initial moment and m} equals
Zle wi&y. If f(o) is smaller than the machine tolerance,
the guessed value of o satisfies Eq. (37). Ridder’s method can
be used to find the root of Eq. (38), which is o. The details
of Ridder’s method can be found in the literature [151]. Here,
we only summarise the iterative procedure that was applied to
the EQMOM:
1) Calculate the midpoint o3 =
given initial roots, o1 and 0.
2) Calculate o4 by

0.5(o1 + o02) from two

sign (f(01) — f(02)) f(03)
V f(03)2 = f(01) f(02)
3) Check whether f(o4) = 0. If yes, the iterative proce-

dure converges. Otherwise, repeat the iterative procedure
from step 1.

. (39)

oy =03+ (03—01)



After o has been found, the continuous NDF can be
constructed by Eq. (32). To calculate the moments for the next
time step, the source terms need to be calculated. One may
want to calculate the source terms in the EMOM following the
procedure that was employed in the QMOM. However, even
the moment transport equations for the EQMOM are identical
with the equations in the QMOM, the closure in the EQMOM
is much more complicated than in the QMOM due to the
continuous reconstructed NDF. In the following, the breakage
source terms were employed as an example to demonstrate
that secondary abscissas and weights need to be introduced to
calculate the source terms.

The death term of the breakage can be calculated by

d) <XN: w;dy(d d,;)) dd
N ! i=0
::jij«yijg d*g (d) 6,(d, d;)dd

)dd

(Ind — d;)?
b (202
(40)

2
— d = exp(osV2 +d;)
— dd = V20 exp(05V2 + d;)ds.

Substitute Eq. (41) into Eq. (40):
g(d ! e dd
= expl —
dovor ¥

_ ﬁ: w; 70 (exp(asx/i + dz))k g (exp(as\/i +d;))

(41)
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exp(osv/2 + d;)oV/2r
e V2exp(osv2 +d;)ds
N o0
= % Z w; / (exp(asx/i + di))k

i=1

— 00

g (exp(asﬂ + dl)) e=% ds. (42)

Eq. (42) can be calculated by the Gauss-Hermite formula:

zj_\’: (exp (0sV2 +d; ))

é\g

g (eXp (0sV2 +d; )) S ds
ZN:wZ EJ: (exp(asj\/i + dl))k

i=1 j=1

g (exp(asj\/i + di)) wj) . (43)
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TABLE II: The numbers of the summation operations for the
QMOM and the EQMOM with different numbers of abscissas.

Number of Number of
nodes and weights ~ summation operation
N =2 4
QMOM N —3 9
- r_
EQMOM N=2 N =10 400

N=2 N =20 1600

where INV; is the number of the secondary abscissas s; and
weights w;. Eq. (43) is the final form of the death term of
the breakage in the EQMOM. It can be seen that s; and w;
are introduced in order to calculated the integral in Eq. (43).
We can choose a large value of IN; to improve the accuracy
of Eq. (43). The calculation of other terms is neglected here
for brevity. The final breakage and coalescence source terms
are reported as follows:

1 N N N; Nj
Sy ~ % E § Wiy Wiy E § : Wi, Wy,
i1=1ip=1
3

Jj1=1j72=1
3 k/3 g k o
{(6i1,j1 te €iy ]2) T €1 Ciayga | Qirgiizge
N N~
k'
\/’ Z Z wllelgll,h (bzl g1 21 ]1) ) (44)
i1=171=1
where iy j1yia,ga = a(eil,j175i2,j2)’ Giv, 51 = g(cihjl)’ and
where:
L)

—k
bilajl = /dkﬂ (d‘6i17j1) dd7 €i1,j1 — e(sjadi)
0

(45)

The solution procedure of the EQMOM is summarized as
follows:

1) Guess o, calculate the corresponding m;, by Eq. (37)
from the given first even initial moments. Calculate the
primary weights and abscissas by the moment inversion
algorithm (e.g., the PD algorithm).

2) Determine whether the convergence criterion is satisfied,
which is given in Eq. (38). If yes, calculate the source
terms. Otherwise, apply Ridder’s iterative procedure
until the convergence criterion is satisfied.

3) Calculate the source terms and the unknown time deriva-
tives of the moments in Eq. (22).

4) The iterative procedure is repeated from step 1.

In contrast to the QMOM, the EQMOM employs 2N + 1
moments to calculate the N primary weights and abscis-
sas, and an additional parameter o, which can be used
to reconstruct a continuous NDF. Obviously, the additional
moment transport equation imposes increased computational
resource requirement. In addition, an iterative procedure with
the Ridder’s method is carried out in each time-step loop.
This dual-iterative feature of the EQMOM leads to slow
calculation. Sometimes the calculations diverge, depending on
the initial guess for o. However, it was found that most of the
computational resources were spent on the calculation of the



source terms [24] and the EQMOM can be much slower than
other QBMM s, such as the DQMOM or even the CM [173].
As reported in Table. II, there are only N x N summation
operations for the coalescence source terms for the QMOM.
However, for the EQMOM with N primary abscissas and N’
secondary abscissas, there are (N x N')x (N x N') summation
operations for the coalescence source terms.

E. COMOM

The CQMOM was first introduced and validated for passive
scalars transportation [120] for Flash Nanoprecipitation. One
year later, the comprehensive theory of the CQMOM was
presented by Yuan et al. [128], and it was applied to active
scalars (e.g., velocities). Compared with the QMOM and the
EQMOM and other methods (e.g., the multivariate QMOM
[140], the tensor-product QMOM [141] or the DQMOM),
the CQMOM is a more popular method for problems with
multivariate NDF. It is based on conditional density function
(CDF) theory. The CDF represents the probability of having
one internal coordinate within an infinitesimal limit when
one or more of the other internal coordinates are fixed and
equal to a specific value [73], [128]. For clarity, we will
only discuss the algorithm of the CQMOM with two internal
coordinates, namely, particle size d and particle composition ¢.
Moreover, two abscissas for the particle size and composition
are employed as an example to demonstrate the algorithm of
the CQMOM. 1t is straightforward to increase the number of
internal coordinates for other problems.

The bivariate NDF, which is denoted as n(d, ¢), can be
written as

n(d, ¢) = n(¢|d)n(d),

where n(¢|d) corresponds to the CDF for ¢ given a fixed value
of d. Therefore, the conditional moments for ¢ are defined by

Ng
I (dy) = / Pn(9lda)dd = 3 wapdl,
p=1

where w, g and ¢, g are the conditional weights and abscissas
for ¢, respectively; N is the number of the abscissas for ¢.
Eq. (47) implies that any given value of d, corresponds to
a conditional moment set (¢)’ (d,,). The conditional moment
set can be used to find the conditional weights and abscissas
for the conditioned internal coordinate. It is straightforward to
show that

(46)

(47)

/ / di¢n(d, $)dddg
_ / g ( / ¢jn(¢|d)d¢) n(d)dd
N, Na
=3 wd ( / ¢fn(¢|da>d¢) =S wad, () (da)

a=1 a=1

Nq
=Y wad, Zwaﬁ%ﬂ ., (48)

a=1

where N, is the number of abscissas for d. Eq. (48) can
be used to find the conditional weights and abscissas for
the conditional (secondary) internal coordinate from the pure
moments (m; o). For example, if j = 0, the weights and
abscissas can be calculated by the moment inversion algorithm
as discussed in the previous sections:

mo,o0 w1
m PD |w
R I (49)
ma,o dq
ms do

After the weights and abscissas have been found, the condi-
tional weights and abscissas for the second internal coordinate
can be calculated from the conditional moments by Eq. (47).
These unknown conditional moments can be calculated by
Eq. (48). For example, after d; and dy have been calcu-
lated, the conditional moments (¢)’ (d,) can be calculated
by Eq. (48), which can be written as the following expanded
form (e.g., No = Ng = 2):

mo,1 = wi (@) (di) + w2 (¢)" (do),
my1 = widy (9)' (d1) + wads (¢)" (da),
mo,2 = wi () (dv) + wa (9)* (da),
2 2 (50)
mi2 = widy (¢)” (d1) + wadz (#)” (dz2),
mo,s = wi (9)° (dv) + wa () (da),
mi s = widy (¢)° (dy) + wads ()* (da)
Eq. (50) can be written in the following matrix form:
{<¢>] (dl)] _ |: w1 w2 ]_1 {m071:| (51)
(¢)’ (dz) widy  wadg| |

As long as the abscissas d; are distinct, the Vandermonde
linear system in Eq. (51) is of full rank and the necessary con-
ditional moments (¢)’ (d1) and (¢)’ (d2) can be calculated.
By virtue of Eq. (47), the conditional weights and abscissas
can be calculated by the following relationship:

<¢>O (dl) w11 <¢>0 (dg) w21
(@) (d1)| pp |wia| [(®) (d2)| P w2
<(/j)>2 (dl) - ¢1,1 <¢>2 (dg) ~ ¢2)1 (52)
(®)” (dv) P12 (0)* (da) G2,2

The calculation of the source terms in the CQMOM needs
to take into account the multivariate NDF. For example, the
source terms for the breakage and coalescence processes are



expressed as follows [6], [174]:

d ¢
d? al((d® = d3 1/3,(1/
0

d/3)2/3

d, ¢ld’, par)n (d', par) dd' ddas

—g(d)n(d,9),

Eq. (53) is different from Eq. (15) due to the existence of
the multivariate NDF, and the closure is different. Moreover,

(53)

the DSD function needs to be extended. Readers who are
interested in the theory are referred to the latest works [6],
[73] for comprehensive information. Here, we employ the
death term and the birth term of the breakage source term
as an example, to demonstrate the calculation procedure. The
breakage sink term can be calculated as follows:

[ Jrove
1/

d, ¢) ddde

/(;SJ (¢|ld)de | n(d)dd

N Ng _
= dag(da)wa | 3 0% swas
a=1 B=1

The breakage source term can be calculated as follows:

(54)
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For a given bivariate DSD function [6]:
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the analytical solution can be calculated by
de ¢a B
/ / 068 (d, 8ldas 60,5) dd d
0 0
di J
= 3240 N (57)
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By grouping Eq. (57), Eq. (55) and Eq. (54), the breakage

d bg

/ n(6ald)) / / 49 (d, §ld', par) ddd | o | dd
0

N do a8
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p=1 0 0
source terms can be written as
Na
Szl‘),;' = Zwag(d )
a=1
%ﬂ: 3240we, 5di, 07, 4
= (14+3j+9)(E+ 35+ 12)(i + 35 + 15)
N, Ng
=Y dig(da)wa Y ¢, gwa s (58)
a=1 B=1

As illustrated in Fig. 4, the solution procedure of the
CQMOM is summarized as follows:

1) Calculate the abscissas and weights for the first internal
coordinate from the given initial pure moments.

2) Construct the Vandermonde matrix from the abscissas
and the weights.

3) From the Vandermonde matrix and the given initial
mixed moments on the second internal coordinate, cal-
culate the conditional moments (¢)’ (d,) by Eq. (51).

4) From the calculated conditional moments, calculate the
conditional abscissas and the weights by the moment
inversion algorithm. Calculate the source terms by
Eq. (58).



5) The iterative procedure is repeated from step 1.

As an algorithm for problems with a multivariate NDF, the
CQMOM is suitable and applicable for simulating the multi-
phase system with mass transfer [174], [175] and chemical re-
actions [176], in which the internal coordinates include particle
size and composition. In addition, the CQMOM is extensively
applied to the multi-dimensional KE for gas-particle flows, in
which the velocity components (e.g., » and v) can be treated as
different internal coordinates. For such flows, the most obvious
manifestation of non-equilibrium behavior is particle trajectory
crossing (PTC), which can be only predicted with multiple
velocity nodes by the CQMOM. In such cases, particles with
the same size can be transported with different velocities
(abscissas). Readers who are interested in this subject are
referred to other works [128], [148], [171], [177].

F ECOMOM

The CQMOM can be considered as an improved QMOM-
based method for problems with a multivariate NDF. In such
cases, the NDF is discontinuously approximated. Is it possible
to merge the CQMOM with the EQMOM to predict the con-
tinuous multivariate NDF? The answer to this question seems
to be yes. The ECQMOM concept was first developed and
applied for gas-particle flows in the 2D large eddy simulation
(LES) framework by [148] and was discussed in detail by
[73]. In the work of Chalons et al. [148], the ECQMOM with
Gaussian KDF was called multi-Gaussian (MG) quadrature
method. Because they aimed at LES, only the ECQMOM can
capture the velocity dispersion around each quadrature point
[166], [171], [178]. Similar to the EQMOM, the multivariate
NDF in the ECQMOM is approximated by

No Npg
n(d, ) = > wals (dyda) | Y wa 3o, (6,605 | »
a=1 B=1

(59
where o and o, are the variances for the first internal
coordinate and the second internal coordinate, respectively.
To solve for these two additional unknown variances in the
unclosed equation system, two additional moment equations
are necessary. The solution procedure of the ECQMOM is
illustrated in Fig. 4. The calculations of the source terms and
the moment transport equations are similar to the CQMOM
and the EQMOM. Therefore, the calculation procedure of the
ECQMOM is omitted here for simplicity.

[II. CFD-PBE COUPLING FOR INHOMOGENEOUS
MULTIPHASE SYSTEMS

All the algorithms that were discussed above can be ex-
tended for spatially inhomogeneous multiphase systems. In
such cases, the flow field information (e.g., turbulent energy
dissipation rate) needs to be specified. The information of the
flow field is usually provided by the CFD simulation. Then,
a CFD-PBE coupling procedure should be formulated. The
CFD-PBE coupling can be implemented in any CFD code,
such as ANSYS Fluent or OpenFOAM. Recently, an open-
source OpenFOAM-based code which is called OpenQBMM

was released. The QMOM, EQMOM and CQMOM were
implemented with multiple sub-models [179]. In the coupled
CFD-PBE system, a corresponding spatial advection term and
a diffusion term for fine particles [73], [180] need to be
included, which will be discussed in the following sections.

A. CFD coupling with the QMOM and the EQMOM

In the QMOM and EQMOM in which the moments are
transported, the moment advection terms and diffusion terms
(for fine particles) should be included. Take the advection
term as an example. If we apply the moment transformation
in Eq. (3), the moment transport equations can be written as

follows: 5
m
aTk +V - (Ugmyp) = Si,

where Si is the integral form of the source term, Uq is
the dispersed phase velocity, which can be predicted by the
CFD. Depending on the specific problem, Eq. (60) needs to
be addressed separately. If it is coupled with a single-phase
CFD solver, it is common to implement the moment transport
equations as passive scalar transport equations, which can be
viewed as a type of one-way coupling. In such cases, the
solution of the PBE has no effect on the flow field and the
implementation is straightforward. If it is coupled with a two-
phase CFD solver, in which the PBE is used to describe
the dispersed phase’s movement and evolution, Uy can be
calculated by the two-phase CFD solver (e.g., two-fluid model)
and the effect of the particle size on the interfacial force
exchange term needs to be considered. In the incompressible
two-fluid model (TFM) without mass and heat transfer, the
governing equations are reported by [181]-[183]

(60)

0

—gtd + V- (aqUq) =0, (61)
0(aqU
%‘FV'(O@ (Ud ®Ud))+V'(Oéde)+V'(Olde)

= —aqVp +aqg + My, (62)
9 (acU.
% + V- (e (Ue ® U)) + V- (0e7c) + V - (acRe)

= —a.Vp+acg— Mgy, (63)

where o4 is the volume fraction of the dispersed phase, pqg
is its density and U, is its average velocity, p is the pressure
shared by the two phases, 74 and 7. are the viscous-stress
tensors, Rq and R, are the Reynolds-stress tensors, g is
the gravitational acceleration vector and My is the interfacial
force term. The CFD-PBE coupling lies in the calculation
of the My. In the TFM, the particle size is assumed to
be constant. However, in the CFD-PBE coupling, the mean
Sauter diameter for each computational grid is calculated
from the predicted abscissas and weights, and the growth and
breakage/coalescence can be included. Moreover, it is common
for strong breakage and coalescence to occur in the turbulent
mixing processes. The TFM will fail in predicting such a
phenomenon.
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Fig. 4: Solution procedure for CQMOM (left) and ECQMOM (right) with two internal coordinates (d and ¢). The elements

in gray were given as the initial mixed moments (m; ;).

The coupling of CFD with the moment transport equations
is summarized as follows:

1) Calculate the interfacial force exchange term (e.g., drag
force) from the mean Sauter diameter, which is com-
puted from the initial moments (e.g., ms/ma).

2) Calculate the information of the flow field by the TFM
with the updated interfacial force exchange term.

3) Feed the calculated advection velocity into the moment
transport equations and update the moments for the next
time step.

4) The iterative procedure is repeated from step 1.

The coupling of CFD with the moment transport equations
is suitable for a large variety of applications. However, it
can be seen that all moments are transported with the same
dispersed velocity, as reported in Eq. (60). Thus, all particles
are moving with the same velocity: Ug. This approximation is
only applicable when the Stokes number is sufficiently small
that the shape of the NDF is generally narrow enough not to
have a significant size-segregation effect.

B. CFD coupling with the DOMOM

If the DQMOM is employed to solve the PBE, another
coupling procedure is required because the moment transport
equations are transformed to the weights/abscissas transport
equations. The weights and abscissas can be transported with
different velocities, which is another important feature of
the DQMOM. The coupling is therefore applicable for the
problems with a wide NDF shape. Extending the homoge-
neous DQMOM algorithm to the inhomogeneous DQMOM is
straightforward; only the advection term needs to be included
in Eq. (31), which can be written as follows:

Zor + V- (wiUy) ao
Owo
+ V- (IUQUQ) ay
902 = 64
Léltaﬁ + V- (w1d1Uy) bo (64)
ads 1 . (wydyUs) by

where U; and U, are the advection velocities for the first
abscissa and second abscissa, respectively. If we assume

U; =U; =Uyg, (65)

the predicted abscissas and weights by the DQMOM will
be identical to the results that are predicted by the moment
transport equations as reported in Eq. (60). However, Eq. (65)
goes against the motivation of developing the DQMOM to
strongly couple the internal coordinates with the phase ve-
locities. To predict the different phase velocities for different
internal coordinates, the DQMOM is usually coupled with the
multi-fluid model (MFM) instead of the TFM, where only one
dispersed phase velocity is predicted.

C. CFD coupling with the COMOM and ECOMOM

In the moment transport equations in the CQMOM and the
ECQMOM, special treatments need to be included, depending
on the specific problems. If the phase-space diffusion is
neglected, it is enough to add the advection terms into the
mixed moment transport equations as reported in Fig. 4. If
Ny = 2 and Ny = 2, ten and thirteen moment transport
equations need to be solved for the CQMOM and the ECQ-
MOM, respectively. This coupling procedure is similar to the
coupling of CFD with QMOM/EQMOM. The CQMOM and
ECQMOM was applied to simulate Flash Nanoprecipitation
and droplet evaporation [120], [156]. However, for the mass
transfer of species when chemical reactions occur, the phase-
space diffusion terms should be included [174], [175]. For
such problems, the drift terms should be added into the NDF
transport equation reported in Eq. (1):

OU0) | 9 (Uan(d, 6)) + o (dnd ) =5 (66
where gi) is the rate of continuous change of particle compo-
sition due to molecular phenomena. Transforming the third
term in the L.H.S. of Eq. (66) to the moment terms follows
the same procedure as that reported in Eq. (7). Another
important application of the CQMOM is to solve the transport
equation of the velocity distribution function (VDF) to capture
the PTC, which can be only predicted by multiple values
of the advection velocities. However, it should be stressed
here that the PBE is not suitable for such processes, and the
coupling procedure that was discussed here is not suitable
for predicting PTC because the velocity is excluded from the



internal coordinate. As the discussion of the CFD coupling
with the KE is beyond of the scope of this work, readers who
are interested in this subject are referred to other works [128].

IV. NUMERICAL PROBLEMS AND LIMITATIONS
A. Boundedness of the phase fraction and moments

The moments of the NDF represent some important physical
properties of the population of particles and they have to obey
physical rules. For example, when the internal coordinate is
the particle diameter, mg is linearly dependent on the phase
fraction:

(67)

m3 = kya,

where k, is the shape coefficient which equals /6 for a sphere
particle. Under such assumption, the transport equation of mg
(without source terms) is equivalent to the dispersed phase
fraction transport equation, which implies

M3 LG (Umg) = 0 (68)
at
equals 5
94 | ¥ (Ugaq) = 0. (69)

ot
When Eq. (68) and Eq. (69) are solved by the finite volume
method, the key issue is to ensure the boundedness of msg
and the phase fraction, as unbounded solutions may look
reasonable but are completely erroneous. By close examination
of Eq. (69), the use of the upwind approximation can guarantee
that the phase fraction is bounded by zero, but it cannot
guarantee that it is bounded by one. If the phase equations for
both phases are solved together and an appropriate bounded
discretization scheme is applied, @ > 0 and the constraint
a < 1 will be obeyed [184]. However, this method does not
guarantee conservation, which is a critical issue in multiphase
flows with high density ratios because small phase fraction
errors may correspond to large mass-fraction errors. Weller
[185] proposed using the following equation instead of the
original one:

0
S 4V (Uag) = V- (Ui(1 - ag)aq) =0,

where U, is the relative phase velocity and U is the average
phase velocity, which equals aqUq 4+ a.U.. Eq. (70) ensures
the boundedness of the phase fraction in theory. In the context
of the moments, m3 should be bounded roughly in [0, 1.91],
as reported in Eq. (67). Unfortunately, the moment transport
equations have the same boundedness problem as of the
V -Uq # 0 in Eq. (60). Buffo et al. [186] were inspired by
Weller [185] to reformulate the moment transport equations
as follows:

(70)

om

i+ V- (Umg) = V- (Ur (1= aa) mi) = 0.
It was proven that Eq. (71) ensure the boundedness of the
moments [186]. However, the practical numerical procedure

has limitations as well:

(71)

1) Eq. (71) can only utilize the first-order scheme because
of the realizability problems which will be discussed in

the next section. If a higher-order scheme was employed
for Eq. (70), and a first order scheme was employed for
Eq. (71) separately, the predict aq and §Fms will be
different.

2) The strictly boundedness between 0 and 1 still can not be
ensured by Eq. (70) due to its non-linear dependence on
aq as shown in the third term. A slightly negative value
of aq introduces divergence of the simulations. One pos-
sible solution is to solve the equation for aq and a it-
eratively in each time step. However, it is computational
demanding. Another practical solution is to employ the
explicit Flux-correct transport (FCT) algorithm to solve
Eq. (70), the variation of which was firstly implemented
by OpenFOAM foundation in OpenFOAM-1.4.1 for the
phase fraction equation. Therefore, it is reasonable to
employ the FCT algorithm for the moment transport
equations as reported in Eq. (71). However, due to the
anti-diffusion procedure in FCT [187], it might introduce
the realizability problems. Such numerical procedure
needs further investigation.

B. Higher-order scheme and realizability

When a higher-order scheme is employed for the advection
term, Eq. (71) tends to diverge. This problem is called the mo-
ment realizability problem or the moment corruption problem
in the field of PBM. From the aspect of CFD, the realizability
refers to the solution of a problem being physically realistic
[188]. Algorithms that are not realizable may result in non-
physical solutions or cause numerical methods to diverge. In
the context of the QBMM, whenever the moment set corre-
sponds to a non-negative NDF, the moment set is realizable.
Unfortunately, the realizability of the moment set has been
proven to be difficult to maintain by many works when the
PBE is coupled with CFD for inhomogeneous systems [116],
[189]-[192]. This non-realizable moments set is called the
“invalid moment sets” [189]. If the invalid moment set were
fed into the moment inversion algorithm, unrealizable abscis-
sas would be calculated (e.g., d < 0), thereby jeopardizing
the stability of the simulation. The necessary and sufficient
condition for the existence of a non-negative and unique NDF
for a moment set is the non-negativity of the Hankel-Hadamard
determinant [193]

mg ME+4+1 ME41
Mmi+1 mrg42 MEk4i14+1
Ap = . > 0. (72)
Me4+1 ME41+1 Mit1+1

When the Hankel-Hadamard determinant is negative, the mo-
ment sets are invalid. However, it is not reasonable to compute
all the Hankel-Hadamard determinants in each time step.
Laurent and Nguyen [192] proposed to check the positivity
of the (i which are parameters of the PD algorithm. When (j,
is positive, realizability criterion is satisfied.

Different algorithms were developed in order to overcome
the problem. The correction algorithm [189] employs the
first three moments to calculate the three parameters of the



log-normal distribution function and calculate the entire set
of the realizable moments. The adaptive Wheeler algorithm
returns the largest possible set of weights and abscissas [128].
However, when the moment transport equations are coupled
with the CFD, it does not make sense to correct the invalid
moment sets in each time step when the higher-order scheme
is employed, as this leads to moment corruption. Vikas et al.
[194] developed a realizable higher-order finite volume scheme
for the KE with an advection term, and it was lately extended
by Vikas et al. [191] to the PBE with a diffusion term. This
scheme was based on the kinetics-based finite volume method
(KBFVM) [73] since it was originally developed for the KE.
However, the KBFVM is also applicable to the PBE. In the
following, the higher-order scheme proposed by Vikas et al.
[194] is called Vikas scheme.

Fig. 5: The computational cell labelled by “owner” and “neigh-
bour” in the unstructured computational mesh framework.

For the unstructured computational mesh, as reported in
Fig.5, the NDF transport equations with constant dispersed
velocity Uq can be written as

on

(73)
The source terms are neglected since they do not create non-
realizability problems. If an explicit Euler time scheme is used
with the finite volume method, the updated NDF for grid
labelled by “own” for the time step ¢t + At can be calculated
by

t+At ot t. .t
Nown = Mown — )\Zanf’
f

(74)

where nown and nye; is the NDF for the owner grid and the
neighbour grid, respectively; A equals A\%twn , in which At is
the time step, Vown i the mesh volume; F;% and n? is the flow
flux and the NDF defined at the cell face “f” at time step ¢. If
a first-order upwind scheme is applied, the nf}c can be inferred
from the upwind cell’s value:

t
nt — Mowns

nei’

t
Ff>0

(75)
F} <0

Substituting Eq. (75) into Eq. (74) yields

t+At
own

= nf)wn — )\Zmax (F;,O) n! — Amin (F]’Z,O) nflei

own

n

=11-A Zmax (F}f7 0) néwn—)\z min (FJf7 O) nt e
f f
(76)
It can be seen that the last term in the R.H.S. of Eq. (76) is
non-negative. If

A‘/YOWH
> max (F 3 0)
and the given initial NDF is non-negative, the NDF calculated
by Eq. (76) will be always non-negative. This concludes the
proof that when a first-order upwind scheme is employed
for the PBE with an advection term, the reliability problem
disappears when the CFL condition is satisfied, as reported in
Eq. (77). The grouping procedure for the first two terms in the
R.H.S of Eq. (76) is essential to solve the realizability problem
and it forms the basis of the Vikas scheme [73], [194].
When a higher-order scheme is employed, Eq. (76) does not
hold and it can not be simplified by grouping. However, if we
substitute Eq. (23) into Eq. (73), it leads to

At < min )

N
t+At __ t t
Nown = Z wa,owné(d - d@,OWH)
a=1

N
—\> F} (Z wl, ;6(d — da,f)t> . (78
f a=1

By virtue of the KBFVM, the weights and abscissas on the
cell face f are split as follows:

N
Fy Z wh, 16(d — da,g)"

a=1

N
= Z maX(Ffown’ O)wf)(,fowna(d - davfown)t
a=1

N
+ ) min(Fy,,, 0w, ;. 6(d = da.y,.,)"-

a=1

Substituting Eq. (79) into Eq. (78) yields

(79)

N
t+At __ t t
Nown = E wa,owné(di da,own)
a=1

N
o )\ Z Z maX(FfOW“’ O)U}f)‘vfown(s(d - davfown)t
a=1 f

N
— A > min(Fy,,, 00w, 5 8(d = day,.)" (80)
a=1 f

The essence of the Vikas scheme is to employ the first-order
spatial scheme for the abscissas and a higher-order scheme for



the weights. Therefore, the abscissas on the cell face can be
approximated by

Ao foun = daowns da. fre; = danei 8D
Substituting Eq. (81) into Eq. (80) yields
i =
N
Z §(d—da,own)" | Wh.own — A Z w!, ;. max (F} ,0)
a=1 f

N
= ADY min(Fy,,, 0wl 5(d = dap,.,)". (82)
a=1 f

For any At that satisfies the condition

wt AViun

«,0wn
5wl g max (FY0)

the NDF is non-negative. It can be seen that in the Vikas
scheme, if the first-order scheme is applied to the abscissas
and the discritized time step satisfies Eq. (83), a higher-
order scheme for the weights can be employed to prevent
the moment realizability problem in the Euler explicit time
marching scheme. It is straightforward to extend the Vikas
scheme to other problems, such as the PBE with diffusion
terms [191]. Therefore, the discussion is omitted here for
brevity.

Another explanation which is easier to understand the Vikas
scheme is also briefly discussed here. The spirit of the Vikas
scheme is to employed the monotonic upwind scheme for
conservation laws (MUSCL) type of reconstruction on the
canonical moments flux at the grid interface, which is calcu-
lated by the piecewise linear (or polynomial) reconstruction of
the weights and the piecewise constant reconstruction of other
variables. As shown in Fig. 6, for a uniform grid (labelled by
I) with spacing Az, we have

At < min

own,a

(83)

wh(x) = wh + ol (x — 27h) Az Az

5 5t os g_Br g

{ dé({L‘):dé , L B) _£_$+ 2,
(84)

where aé is the slope on the Ith cell. Substituting Eq. (84)
into Eq. (13), it leads to

N
mi(z) = Z (wé + O'é(.r —z!)) (dé)k. (85)
p=1

It can be seen that m.(x), at any location w, satisfy Eq. (13)
itself for any slope O’é and these moments values are ensured
to be realizable. In the following we use the 1-D equation

8mk 6mk
Tk R
ot ot
and the piecewise linear reconstruction of weights as an

example to show the procedure of Vikas scheme. It can be
divided into two main steps:

=0 (86)

=1
=]
moments _Z
)—4
=]
weights iy
abscissas

I-1 | 1+1

Fig. 6: Piecewise linear reconstruction of the moments,
weights and constant reconstruction for the abscissas.

1) Discretize Eq. (86) by explicit time-marching scheme:

M,g’”m = M- At (F1+1/2 _ F1—1/2> . @®7)
Ax
where M ,ﬁj“m is the average value of my over the Ith
grid at t+At, FT+1/2 and F1=1/2 are the moments flux
functions defined at the interface I 4+ 1/2 and I — 1/2
for Ith grid, respectively.
2) Instead of interpolating the flux from the moments,
Vikas scheme calculates from the weights and abscissas
as the following:

N
Az i
I+1/2 I I, I dl
F —;Zlmax(uﬁ,O)AS ws + 05— (ds)

N .
—|—Z min(ué+1,O)AS (wé"‘1 - aéHA;) (dé—H) )
B=1
(88)

where AS = AyAz, which is the grid interface surface
normal to z-plane. The flux calculation corresponds to
the flux-vector splitting procedure: the first term in the
R.H.S of Eq. (88) denotes the particles moving from
the I'th grid crossing the I + 1/2 interface, whereas the
second denotes the particles moving from the [ + 1th
grid crossing the I + 1/2 interface. The flux at [ —1/2
can be calculated by similar way.



Readers may find the Vikas scheme is only 1st-order accurate
in time. Following the spirit of total variation diminishing
(TVD) time stepping, multi-stage explicit time-integration
schemes can be used in practice to obtain a higher-order time
scheme (the subscript are omitted for brevity):

m* =m+ F(m),

m*™ =m* 4+ F(m"), (89)

mt+At _ % (m* + m**) ’
where F' is the flux function. It can be easily proven that
the two-stage second-order Runge-Kutta method combined the
flux calculation based on Vikas scheme, as reported equations
above, can ensure moments realizability. However, numerical
problems still exist as discussed as follows:

1) The numerical treatment of the moments are important
when the dispersed phase disappears. This phenomenon
is called phase segregation in multiphase flow field. For
example, in the bubble columns simulations, the initial
bubble column is often filled by water, which implies ayg
and the kth order moment is theoretically zero due to the
absence of bubbles. However, such numerical challeng-
ing settings introduce numerical problems for the TFM
and QBMMs. In TFM, it leads to the singular problem
which can be prevented by numerical manipulation on
the source term. In such cases, the “disappeared” phase’s
velocity equals the terminal velocity. In QBMMs, the
phase segragation implies the weights are zero in these
computational cells. According to Eq. (83), it implies the
time step tends to zero. Otherwise the advected moments
will be un-realizable. One possible solution would be
setting the initial moments to be a relative small value
[158]. Such numerical treatment needs further investiga-
tions and verifications.

2) The Vikas scheme is suitable for Eq. (73). It was proven
by Buffo et al. [186] that it introduces unbounded solu-
tions. In order to ensure the boundedness, one possible
solution is to employ Vikas scheme to solve Eq. (71), in
which two advection terms exist. Meanwhile, the predic-
tion of the mg should be identical with oy if the TFM
was employed to simulate two-phase flows. However,
the agreement of ms and ag can be only obtained by
applying identical numerical scheme to these variables.
The possible solution is to combine the FCT algorithm
and Vikas scheme for the moment transport equations
to ensure boundedness. Such numerical treatment needs
further investigations and verifications.

It should be noted here that the higher-order Vikas scheme
was called “quasi-second-order” scheme by Laurent and
Nguyen [192], as of the higher-order scheme can not be
employed for the weights. Other higher-order schemes were
proposed by them which were called ¢ scheme, ¢ simpli-
fied scheme, QW scheme and QW simplified scheme. These
schemes are based on the calculation of ( which can be
calculated by the moment inversion algorithm (e.g. PD algo-
rithm). The simplified schemes were also developed under the

KBFVM framework, and the ¢ simplified scheme was recently
implemented in the OpenQBMM [179]. The QW simplified
scheme shares large similarities with the Vikas scheme, but the
interpolation of weights and abscissas to cell faces are omitted.
The key difference lies in that the CFL number for ¢ simplified
scheme and QW simplified scheme should be smaller than
1/3 and 1/2, respectively. Readers who are interested in this
scheme are referred to their latest work [192]. Benchmark test
cases of ¢ based schemes need to be investigated in the future.

C. Reconstructed NDF

All the QBMMs track the moments instead of the NDEF,
which implies that the information of the rigorous NDF can
not be directly provided by the algorithm. The algorithm works
well for breakage and coalescence dominated processes and
other similar processes where only the information of the
mean Sauter diameter is required. However, in certain cases it
introduces problems. For example, in evaporation simulations,
it leads to a zero-order moment equation that contains a term
that corresponds to the loss of particles of zero size. In order
to evaluate this term, the value of the NDF at d = 0 is required
but is not available in the QMOM or the DQMOM. When the
NDF was employed in LES framework, the velocity dispersion
around the velocity abscissas are also necessary. A possible
solution is to increase the number of abscissas to a large
enough value (e.g., NV > 100), such that the smallest abscissa’s
expected value tends to zero. However, it was proven that
the moment inversion algorithm is not accurate for N larger
than approximately 10 [123], [195]. In some works, it is
even proven that these methods suffer from ill conditioning
if N > 3 [133], [190], [196]. Thus, the QMOM and the
DQMOM can not be employed for certain problems.

The NDF can be calculated from the moments if the NDF
is defined a-prior. For example, if the NDF is expressed as

N
n = exp (Z AiLi> ,

i=1

(90)

where A; is the unknown coefficients. The corresponding
moments can be written as

N
my = /dk exp (Z Aidi> .
i=1

Given N moments, the coefficients A; can be found by
Newton-Raphson method to reconstruct the NDF. Such method
was adapted for crystallization problems [197]. The EQMOM
follows similar idea. In theory, the reconstructed NDF that
is predicted by the EQMOM will overlap with the shape
of the real NDF since the parameters of the KDF can be
calculated analytically. However, because the values of o are
often assumed to be identical in Eq. (33) to avoid the non-
linear solver, error will be introduced if two or more primary
nodes are employed. When the NDF is reconstructed from the
moments, possible problems are listed as follows:

1) If the real NDF is assumed by summation of the KDF
with different values of o, the predicted reconstructed

oD



NDF by the EQMOM will deviate from the original
NDF [165], [170].

2) When many primary nodes are employed, as reported in
Fig. 7, the reconstructed NDF show oscillations, which
originate from the summation of the KDF [165], [170].

3) The reconstructed NDF that is predicted by the EQMOM
is highly dependent on the shape of the KDF. It can
be seen in Fig. 7 that if the log-normal EQMOM is
employed to predict the real NDF with a beta distribution
shape, it will fail because the left tail of the log-normal
distribution tends to zero, which is not the case for
the beta distribution function. Similar problems were
reported in the works by [129], [165], [170], [198]

However, it should be stress there that although the recon-
structed NDF that is calculated from the moments may deviate
from the accurate NDF, this does not affect the stability of the
numerical simulation. Moreover, the predicted moments are
consistent.

n ()
[§

d, (m) d, (m) d, (m)

Fig. 7: Left: comparison of the real NDF (solid red line) with
the log-normal shape and the reconstructed NDF by the log-
normal EQMOM with one primary node (dashed black line).
Middle: comparison of the real NDF (solid red line) with
the log-normal shape and the reconstructed NDF by the log-
normal EQMOM with two primary nodes (dashed black line).
The dashed green lines represent the reconstructed NDF by
each primary node. Right: comparison of the real NDF (solid
red line) with the beta distribution shape and the reconstructed
NDF by the log-normal EQMOM with one primary node
(dashed black line).

V. CONCLUSIONS

The PBE can be employed to model the dispersed phase
in multiphase flows. The analytical solution of the PBE can
be only obtained under rigid assumptions. A large variety of
algorithms for solving the PBE have been developed. Among
them, the QBMMs were proven to be efficient, especially when
the PBE was coupled with CFD simulations for multiphase
flows. Over the years, the QMOM, DQMOM, CQMOM,
EQMOM, ECQMOM, and HyQMOM were developed for
different problems, and each has advantages and drawbacks. In
the present work, the algorithms of these QBMMs for spatially
homogeneous systems with first-order and second-order point
processes was comprehensively studied. The numerical aspects
when the QBMM was coupled with CFD for inhomogeneous
multiphase systems were investigated. The limitations of each
algorithm were also discussed. The boundedness problem and

the realizability problem of the moment sets when a higher-
order scheme was employed were presented and possible
solutions were summarized.

The numerical challenges and the limitations of the QBMM
are clear and further studies on a more robust and efficient
algorithm are indispensable. Ideally, a quadrature-based mo-
ment algorithm should be able to provide a non-negative NDF
accurately within the internal coordinate limits without the
realizability problem. The spatial numerical scheme should
ensure the boundedness of the moments. In addition, the
algorithm should be able to capture the mathematical char-
acteristics of the equations to be solved.

In the future, the algorithm of the coupling between the CFD
and the generalized population balance equation (GPBE) will
be reviewed.
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APPENDIX A. A CONCRETE EXAMPLE OF INITIAL
MOMENTS CALCULATION

QBMM starts the iteration from the initial moments. These
moments represent statistical features of the NDF. In order
to calculate realizable moments, an initial NDF should be
assumed. For diameter-based NDF, it is common to assume
a log-normal distribution function:

1 (Ind — p)?
e T a_9 )
dov2m P ( 202

where o and p are the log-normal distribution parameters
which can be computed by

n(d) =~

92)

(™
o n(\/v+m2)’ ey
a:,/ln(%ﬂ), (94)

where m is the mean value, /v is the dtandard deviation.
The initial raw moments based on the log-normal NDF can
be expressed as follows:
k202
7)

where IV is the number of particles in per unit, which can be
calculated from the given phase fraction as follows:
aqd
N = 252\
ko exp (3 + £2))

where k, is the shape parameter equals 7 /6. In practice, m
can be seen as the mean particle diameter (e.g., mean Sauter
diameter), /v can be set equal to a small value (e.g., 15
%). Since the moments are calculated from the NDF, they
are ensured to be realizable.

my = N exp (ku + 95)

(96)




Another simpler approach can be used. One can calculate
the initial moments directly from the weights and abscissas
as reported in Eq. (13). The summation of weights should
be equal to N. For example, if three nodes QMOM is used,
one can assume w; = 500, wy = 600, wy = 700, di =
0.005, do = 0.006 and ds3 = 0.007. The moments can be
calculated by my, = > w;d¥. In this approach, the presumed
NDF’s shape can be hardly obtained. It should be stressed
that d; cannot be identical, otherwise the moments cannot be
realizable.

APPENDIX B. DIMENSION OF THE MOMENTS

The dimension of the moments is dependent on the number
density function. If the internal coordinate is particle diameter

d, the dimension of the number density function n(d) is 1/m*.

Therefore, the dimension of kth moments of n(d) is m—3,

m~2, m~, m°,..., m*~3. If the internal coordinate is particle

volume V, the dimension of the number density function n(V)

is 1/m~F. The dimension of kth moments of n(V) is m~3,

m®, m3, m®,..., m*¥3. It should be noted that the weights’

dimension is m—2. Meanwhile, it can be seen that the ms for
n(d) and m, for n(V') is dimensionless, which can be related
to the phase fraction a by the shape factor.
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